\[
\left\{
\begin{aligned}
\frac{\mathrm{d}x}{\mathrm{d}t} = ax + by \\
\frac{\mathrm{d}y}{\mathrm{d}t} = cx + dy
\end{aligned}
\right.
\]
为了之后的分析,我们令
\[
A =\begin{pmatrix}a & b \\c & d\end{pmatrix},\ \mathbf{x}
=\begin{pmatrix}x(t) \\ y(t)\end{pmatrix}
\]
那么,我们有
\[
\begin{pmatrix}x'(t) \\y'(t)\end{pmatrix}=\begin{pmatrix}a x(t)
+ b y(t) \\ c x(t) + d y(t)\end{pmatrix}=\begin{pmatrix}a & b \\ c
& d\end{pmatrix}\begin{pmatrix}x(t) \\ y(t)\end{pmatrix}.
\]